Functional homologs of fungal metallothionein genes from Arabidopsis.

نویسندگان

  • J Zhou
  • P B Goldsbrough
چکیده

Metallothioneins (MTs) are cysteine-rich proteins required for heavy metal tolerance in animals and fungi. Two cDNAs encoding proteins with homology to animal and fungal MTs have been isolated from Arabidopsis. The genes represented by these cDNAs are referred to as MT1 and MT2. When expressed in an MT-deficient (cup1 delta) mutant of yeast, both MT1 and MT2 complemented the cup1 delta mutation, providing a high level of resistance to CuSO4 and moderate resistance to CdSO4. Although the MT-deficient yeast was not viable in the presence of either 300 microM CuSO4 or 5 microM CdSO4, cells expressing MT1 were able to grow in medium supplemented with 3 mM CuSO4 and 10 microM CdSO4, and those expressing MT2 grew in the presence of 3 mM CuSO4 and 100 microM CdSO4. In plants, MT1 mRNA was more abundant in roots and dark-grown seedlings than in leaves. In contrast, MT2 mRNA accumulated more in leaves than in either roots or darkgrown seedlings. MT2 mRNA was strongly induced in seedlings by CuSO4, but only slightly by CdSO4 or ZnSO4. However, MT1 mRNA was induced by CuSO4 in excised leaves that were submerged in medium. These results indicated that Arabidopsis MT genes are involved in copper tolerance. Plants also synthesized metal binding phytochelatins (poly[gamma-glutamylcysteine]glycine) when exposed to heavy metals. The results presented here argue against the hypothesis that phytochelatins are the sole molecules involved in heavy metal tolerance in plants. We conclude that Arabidopsis MT1 and MT2 are functional homologs of yeast MT.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular Cloning and Analysis of Two Flowering Related Genes from Apple (Malus × domestica)

Apple (Malus×domestica Borkh.) is the fourth fruit in importance and Iran ranks fifth in apple production in the world. Longevity of juvenility in apple extends breeding cycles and makes its breeding a tough job. To alleviate this barrier via genetic engineering, the genes involved in flowering and floral development of apple and their function must be identified and characterized. Most of thes...

متن کامل

Fungal Infection Alters Phosphate Level and Phosphatase Profiles in Arabidopsis

Phosphorus (P), in the form of phosphate ion (Pi), is a vital element contributing in biomolecule structures, metabolic reactions, signaling pathways and energy transfer within the living cells. The objective of the present study was to assess the influence of fungal infection on Pi metabolism in compare to the effects of phosphate stress in Arabidopsis. Quantification of total P contents showe...

متن کامل

Gain-of-function in Arabidopsis (GAINA) for identifying functional genes in Hevea brasiliensis

BACKGROUND Forward genetics approaches are not popularly applied in non-model plants due to their complex genomes, long life cycles, backward genetic studies etc. Researchers have to adopt reverse genetic methods to characterize gene functions in non-model plants individually, the efficiency of which is usually low. RESULTS In this study, we report a gain-of-function in Arabidopsis (GAINA) st...

متن کامل

Identification of a functional homolog of the yeast copper homeostasis gene ATX1 from Arabidopsis.

A cDNA clone encoding a homolog of the yeast (Saccharomyces cerevisiae) gene Anti-oxidant 1 (ATX1) has been identified from Arabidopsis. This gene, referred to as Copper CHaperone (CCH), encodes a protein that is 36% identical to the amino acid sequence of ATX1 and has a 48-amino acid extension at the C-terminal end, which is absent from ATX1 homologs identified in animals. ATX1-deficient yeast...

متن کامل

Potato homologs of Arabidopsis thaliana genes functional in defense signaling--identification, genetic mapping, and molecular cloning.

Defense against pests and pathogens is a fundamental process controlled by similar molecular mechanisms in all flowering plants. Using Arabidopsis thaliana as a model, steps of the signal transduction pathways that link pathogen recognition to defense activation have been identified and corresponding genes have been characterized. Defense signaling (DS) genes are functional candidates for contr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Plant cell

دوره 6 6  شماره 

صفحات  -

تاریخ انتشار 1994